Creep Fracture in Tempered Martensitic Steels
ثبت نشده
چکیده
Creep strength enhanced ferritic (CSEF) steels which contain 9 to 12%Cr have become the steels of choice in many industrial high energy systems. The typical compositions of alloy types P91, P92 and E911 are compared with 12CrMoV in Table 1. These steels are selected for use in applications where high temperature creep can occur because of a favorable balance between cost and properties [1,2]. The excellent creep and fracture resistance are achieved because the microstructure, which, when properly processed, exhibits a tempered martensitic matrix containing a substructure with a high dislocation density and a fine dispersion of second phase precipitates. It has been pointed out that the typical alloy compositions for these steels frequently do not include recommendations for upper limits on trace or ‘other’ elements. At least for Grade 91 steels this situation is changing [3]. Because it is well established that inclusions and trace elements can lead to embrittlement it is likely that further controls will be needed to reduce the risk of in-service fracture in other CSEF steels.
منابع مشابه
Hot tensile properties of 9Cr-2WVTa reduced-activation ferritic/martensitic steel
Reduced-activation ferritic/martensitic steels have been developed by replacing molybdenum by tungsten and niobium by tantalum in commercial elevated-temperature Cr–Mo steels to reduce half-life of radioactive isotopes. The objective of this study was to investigate tensile properties of a reduced-activation ferritic/martensitic steel (9Cr-2WVTa) in normalized-tempered (NT) and quenched-tempere...
متن کاملInfluence of Tempering on the Microstructure & Properties of Martensite and Bainite developed in a Low-C High-Si Steel
Martensitic and bainitic steels are two types of widely used steels with excellent mechanical behaviors in automatic industry. It’s universally acknowledged that asquenched martensite possesses poor ductility and impact toughness, which should be tempered before putting into application. During tempering, as-quenched martensite changes from a hard and brittle microstructure to more ductile and ...
متن کاملPrecipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants.
It is crucial for the carbon concentration of 9% Cr steel to be reduced to a very low level, so as to promote the formation of MX nitrides rich in vanadium as very fine and thermally stable particles to enable prolonged periods of exposure at elevated temperatures and also to eliminate Cr-rich carbides M23C6. Sub-boundary hardening, which is inversely proportional to the width of laths and bloc...
متن کاملOptimisation of the Chemical Composition and Manufacturing Route for ODS RAF Steels for Fusion Reactor Application
As the upper temperature for use of reduced activation ferritic/martensitic (RAFM) steels is presently limited by a drop in mechanical strength at about 550°C, Europe, Japan and the US are actively researching steels with high strength at higher operating temperatures, mainly using stable oxide dispersion. In addition, the numerous interfaces between matrix and oxide particles are expected to a...
متن کاملMicrostructure and Mechanical Properties of the Friction Welded Joint between X53CrMnNiN219 and X45CrSi93 Stainless Steel
Dissimilar metals friction welding of austenitic–martensitic stainless steels is commonly used in order to manufacture engine valves in the automobile industry. In this study, X53CrMnNiN219 (austenitic stainless steel) and X45CrSi93 (martensitic stainless steel) valve steel rods were welded by friction welding process. The welded joint was then heat treated at 760 0C for 60 min. Mechanical prop...
متن کامل